§ 960.4-2-6 occur during the first one million years after repository closure. (c) Potentially adverse conditions. (1) A geologic setting that shows evidence of extreme erosion during the Quaternary (2) A geologic setting where the nature and rates of geomorphic processes that have been operating during the Quaternary Period could, during the first 10,000 years after closure, adversely affect the ability of the geologic repository to isolate the waste. (d) Disqualifying condition. The site shall be *disqualified* if site conditions do not allow all portions of the underground facility to be situated at least 200 meters below the directly overlying ground surface. ### § 960.4-2-6 Dissolution. (a) Qualifying condition. The site shall be located such that any subsurface rock dissolution will not be likely to lead to radionuclide releases greater than those allowable under the requirements specified in §960.4-1. In predicting the likelihood of dissolution within the geologic setting at a site, the DOE will consider the evidence of dissolution within that setting during the Quaternary Period, including the locations and characteristics of dissolution fronts or other dissolution features, if identified. (b) Favorable condition. No evidence that the host rock within the site was subject to significant dissolution dur- ing the Quaternary Period. (c) Potentially adverse condition. Evidence of dissolution within the geologic setting—such as breccia pipes, dissolution cavities, significant volumetric reduction of the host rock or surrounding strata, or any structural collapse—such that a hydraulic interconnection leading to a loss of waste isolation could occur. (d) Disqualifying condition. The site shall be *disqualified* if it is likely that, during the first 10,000 years after closure, active dissolution, as predicted on the basis of the geologic record, would result in a loss of waste isolation. ## § 960.4-2-7 Tectonics. (a) Qualifying condition. The site shall be located in a geologic setting where future tectonic processes or events will not be likely to lead to radionuclide releases greater than those allowable under the requirements specified in §960.4-1. In predicting the likelihood of potentially disruptive tectonic processes or events, the DOE will consider the structural, stratigraphic, geophysical, and seismic evidence for the nature and rates of tectonic processes and events in the geologic setting dur- ing the Quaternary Period. (b) Favorable condition. The nature and rates of igneous activity and tectonic processes (such as uplift, subsidence, faulting, or folding), if any, operating within the geologic setting during the Quaternary Period would, if continued into the future, have less than one chance in 10,000 over the first 10,000 years after closure of leading to releases of radionuclides to the accessible environment. (c) Potentially adverse conditions. (1) Evidence of active folding, faulting, diapirism, uplift, subsidence, or other tectonic processes or igneous activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the geologic setting of such magnitude and intensity that, if they recurred, could affect waste containment or isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may increase. (4) More-frequent occurrences of earthquakes or earthquakes of higher magnitude than are representative of the region in which the geologic set- ting is located. (5) Potential for natural phenomena such as landslides, subsidence, or volcanic activity of such magnitudes that they could create large-scale surfacewater impoundments that could change the regional ground-water flow system. (6) Potential for tectonic deformations—such as uplift, subsidence, folding, or faulting-that could adversely affect the regional ground-water flow system. (d) Disqualifying condition. A site shall be disqualified if, based on the geologic record during the Quaternary Period, the nature and rates of fault movement or other ground motion are ## **Department of Energy** expected to be such that a loss of waste isolation is likely to occur. #### § 960.4-2-8 Human interference. The site shall be located such that activities by future generations at or near the site will not be likely to affect waste containment and isolation. In assessing the likelihood of such activities, the DOE will consider the estimated effectiveness of the permanent markers and records required by 10 CFR part 60, taking into account sitespecific factors, as stated in §§ 960.4-2-8-1 and 960.4-2-8-2, that could compromise their continued effectiveness. ### § 960.4-2-8-1 Natural resources. - (a) Qualifying condition. This site shall be located such that—considering permanent markers and records and reasonable projections of value, scarcity, and technology—the natural resources, including ground water suitable for crop irrigation or human consumption without treatment, present at or near the site will not be likely to give rise to interference activities that would lead to radionuclide releases greater than those allowable under the requirements specified in §960.4–1. - (b) Favorable conditions. (1) No known natural resources that have or are projected to have in the foreseeable future a value great enough to be considered a commercially extractable resource. - (2) Ground water with 10,000 parts per million or more of total dissolved solids along any path of likely radionuclide travel from the host rock to the accessible environment. - (c) Potentially adverse conditions. (1) Indications that the site contains naturally occurring materials, whether or not actually identified in such form that (i) economic extraction is potentially feasible during the foreseeable future or (ii) such materials have a greater gross value, net value, or commercial potential than the average for other areas of similar size that are representative of, and located in, the geologic setting. - (2) Evidence of subsurface mining or extraction for resources within the site if it could affect waste containment or isolation. - (3) Evidence of drilling within the site for any purpose other than repository-site evaluation to a depth sufficient to affect waste containment and isolation. - (4) Evidence of a significant concentration of any naturally occurring material that is not widely available from other sources. - (5) Potential for foreseeable human activities—such as ground-water withdrawal, extensive irrigation, subsurface injection of fluids, underground pumped storage, military activities, or the construction of large-scale surfacewater impoundments—that could adversely change portions of the groundwater flow system important to waste isolation. - (d) *Disqualifying conditions.* A site shall be disqualified if— - (1) Previous exploration, mining, or extraction activities for resources of commercial importance at the site have created significant pathways between the projected underground facility and the accessible environment; or - (2) Ongoing or likely future activities to recover presently valuable natural mineral resources outside the controlled area would be expected to lead to an inadvertent loss of waste isolation. # \S 960.4–2–8–2 Site ownership and control. - (a) Qualifying condition. The site shall be located on land for which the DOE can obtain, in accordance with the requirements of 10 CFR part 60, ownership, surface and subsurface rights, and control of access that are required in order that potential surface and subsurface activities as the site will not be likely to lead to radionuclide releases greater than those allowable under the requirements specified in §960.4–1. - (b) Favorable condition. Present ownership and control of land and all surface and subsurface rights by the DOE. - (c) Potentially adverse condition. Projected land-ownership conflicts that cannot be successfully resolved through voluntary purchase-sell agreements, nondisputed agency-to-agency transfers of title, or Federal condemnation proceedings.